Možnosti aplikace aktivních prvků v kolejových vozidlech
Obsah hlavního článku
Abstrakt
Článek představuje příklady použití aktivních prvků v pojezdu kolejových vozidel a výsledky výzkumu prezentované v minulých letech v této oblasti. V článku jsou představeny jednotlivé způsoby zlepšení chodových vlastností kolejových vozidel pomocí aktivně řízených prvků. Autoři se dále zamýšlejí nad budoucím rozvojem aktivních prvků v pojezdech kolejových vozidel v souvislosti se současnými trendy v železničním průmyslu.
Podrobnosti článku
Reference
FU, B., GIOSSI, R. L., PERSSON, R., STICHEL, R., BRUNI, S., GOODALL, R. Active suspension in railway vehicles: a literature survey. Railway Engineering Science [online]. 2020, 28, 3–35 [cit. 25. 06. 2021]. ISSN 2662-4745. DOI: DOI: 10.1007/s40534-020-00207-w
KITADA, H. History of air spring development for Shinkansen trains. SEI Technical Review. 2017, 84, 114–119. ISSN: 1343-4349.
PARK, J., SHIN, Y., HUR, H., YOU, W. A practical approach to active lateral suspension for railway vehicles. Measurement and Control [online]. 2019, 52(9–10), 1195–1209 [cit. 04. 06. 2021]. ISSN 0020-2940. DOI: 10.1177/0020294018819539
KAMADA, T., MAKINO, T. Active vertical elastic vibration suppression of railway vehicle by air spring suspension. Qingdao, China: 23rd international symposium on dynamics of vehicle on roads and tracks (IAVSD 2013), 19.–23. 08. 2013.
QAZIZADEH, A., PERSSON, R., STICHEL, S. On-track tests of active vertical suspension on a passenger train. Vehicle System Dynamics [online]. 2015, 53(6), 798–811 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2015.1015429
QAZIZADEH, A., STICHEL, S., FEYZMAHDAVIAN, H. R. Wheelset curving guidance using H ∞ control. Vehicle System Dynamics [online]. 2017, 56(3), 461–484 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2017.1391396
MICHÁLEK, J., ZELENKA, T. Reduction of lateral forces between the railway vehicle and the track in small-radius curves by means of active elements. Applied and Computational Mechanics [online]. 2011, 5(2), 187–196 [cit. 04. 06. 2021]. ISSN: 2336-1182. Dostupné z: https://www.kme.zcu.cz/acm/acm/article/view/162/126
WANG, X., LIU, B., DI GIALLEONARDO, E., KOVACIC, I., BRUNI, S. Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation. Vehicle System Dynamics [online]. 2021. ISSN 0042-3114.
DOI: 10.1080/00423114.2021.1912366
YUE, H., YADONG, S., GUOSONG, W., YUN, L., YUAN, Y. Simulation and Experimental Study on the Active Stability of High-Speed Trains. Computing in Science and Engineering [online]. 2019, 21(3), 72–82 [cit. 04. 06. 2021]. ISSN 1521-9615. DOI: 10.1109/MCSE.2019.2893159
PARK, J-H., KOH, H-I., HUR, H-M., KIM, M-S., YOU, W-H. Design and analysis of an active steering bogie for urban trains. Journal of Mechanical Science and Technology [online]. 2010, 24(6), 1353–1362 [cit. 04. 06. 2021]. ISSN 1738-494X. DOI:10.1007/s12206-010-0341-4
UMEHARA, Y., KAMOSHITA, S., ISHIQURI, K., YAMANAQA, Y. Development of electrohydraulic actuator with fail-safe function for steering system. Quarterly Report of RTRI. 2014, 55(3), 131–137. ISSN 1880-1765.
HUR, H., SHIN, Y., AHN, D., HAM, Y. Steering Performance Evaluation of Active Steering Bogie to Reduce Wheel Wear on Test Line. International Journal of Precision Engineering and Manufacturing [online]. 2019, 20(supplement), 1591–1600 [cit. 04. 06. 2021]. ISSN 2234-7593.
DOI:10.1007/s12541-019-00167-0
GIOSSI, R. L., PERSSON, R., STICHEL, S. Improved curving performance of an innovative twoaxle vehicle: a reasonable feedforward active steering approach. Vehicle System Dynamics [online]. 2020 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2020.1823005
CORDERO SAPIÉN, J. CRRC Announces Global Release of CETROVO Carbon-fibre Metro Vehicles. In: Railway News [online]. 26. 09. 2018 [cit. 04. 06. 2021]. Dostupné z: https://railwaynews.com/crrc-global-release-cetrovo-carbon-fibre-metro-vehicles/
ČAPEK, J. Optimalizace jízdních vlastností nízkopodlažních tramvají. Praha, 2013. Disertační práce. ČVUT v Praze.
KONOWROCKI, R., KALINOWSKI, D., SZOLC, T., MARCZEWSKI, A. Identification of safety hazards and operating conditions of the low-floor tram with independently rotating wheels with various drive control algorithms. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2021, 23(1), 21–33. ISSN 1507-2711.
PEREZ, J., MAUER, L., BUSTURIA, J. M. Design of Active Steering Systems for Bogie-Based Railway Vehicles with Independently Rotating Wheels. Vehicle System Dynamics [online]. 2016, 37(supplement 1), 209–220. ISSN 0042-3114. DOI: 10.1080/00423114.2002.11666233
MEI, T. X., GOODALL, R. M. Practical Strategies for Controlling Railway Wheelsets Independently Rotating Wheels. In: Journal of Dynamic Systems, Measurement, and Control [online]. 2003, 125(3), 354–360 [cit. 04. 06. 2021]. ISSN 0022-0434. DOI: 10.1115/1.1592191
LIANG, B., IWNICKI, S. D. Independently Rotating Wheels with Induction Motors for High-Speed Trains. Journal of Control Science and Engineering. 2011, 1–7. ISSN 1687-5249.
AHN, H., LEE, H., GO, S., CHO, Y., LEE, J. Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving. Journal of Electrical Engineering and Technology. 2016, 11(4) 1042–1048. ISSN 1975-0102.
LU, ZG., YANG, Z., HUANG, Q., WANG, XC. Robust active guidance control using the μ-synthesis method for a tramcar with independently rotating wheelsets. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2019, 233(1), 33–48. ISSN 0954-4097. DOI: 10.1177/0954409718777374
OH, YJ., LEE, JK., LIU, HC., CHO, S., LEE, J., LEE, HJ. Hardware-in-the-Loop Simulation for active control of tramcars with independently rotating wheels. IEEE Access. 2019, 7, 71252–71261. DOI: 10.1109/ACCESS.2019.2920245
KURZECK, B., VALENTE, L. A novel mechatronic running gear: concept, simulation and scaled roller rig testing. Lille, France: 9th world congress railway research, 22.–26. 05. 2011.
STOW, J., COONEY, N., GOODALL, R. M., SELLICK, R. The use of wheelmotors to provide active steering and guidance for a light rail vehicle. London, UK: The Stephenson Conference: Research for Railways, 25.–27. 04. 2017.
SUGUHARA, Y., KOJIMA, T. Suppression of vertical vibration in railway vehicle carbodies through control of damping force in primary suspension: presentation of results from running tests with meter-gauge car on a secondary line. WIT Transactions on The Built Environment.
Computers in Railways XVI. 2018, 181, 329–337. ISSN 1743-3509.
FARHAT, N., WARD, C. P., GOODALL, R. M., DIXON, R. The benefits of mechatronically-guided railway vehicles: A multi-body physics simulation study. Mechatronics. 2018, 51, 115–126. ISSN 0957-4158. DOI: 10.1016/j.mechatronics.2018.03.008
KRÜGER, D., LÜDICKE, D., HECKMANN, A., ALVES, C.G. Next Generation Train Bogie: Production of a Prototype Axle Bridge for the "NGT Bogie Research Facility" (FuN). ZEVrail. 2021, 145(1-2), 42–49. ISSN 1618-8330.