Possibilities of Application of Active Elements in Rolling Stock
Main Article Content
Abstract
This article presents examples of the use of active elements in the rolling stock and research results about this topic presented in recent years. The contribution outlines different ways to improve running characteristics of rail vehicles by application actively controlled elements. The authors also reflect on the future development of active elements in rolling stock running gear in connection with current trends in the railway industry.
Article Details
References
FU, B., GIOSSI, R. L., PERSSON, R., STICHEL, R., BRUNI, S., GOODALL, R. Active suspension in railway vehicles: a literature survey. Railway Engineering Science [online]. 2020, 28, 3–35 [cit. 25. 06. 2021]. ISSN 2662-4745. DOI: DOI: 10.1007/s40534-020-00207-w
KITADA, H. History of air spring development for Shinkansen trains. SEI Technical Review. 2017, 84, 114–119. ISSN: 1343-4349.
PARK, J., SHIN, Y., HUR, H., YOU, W. A practical approach to active lateral suspension for railway vehicles. Measurement and Control [online]. 2019, 52(9–10), 1195–1209 [cit. 04. 06. 2021]. ISSN 0020-2940. DOI: 10.1177/0020294018819539
KAMADA, T., MAKINO, T. Active vertical elastic vibration suppression of railway vehicle by air spring suspension. Qingdao, China: 23rd international symposium on dynamics of vehicle on roads and tracks (IAVSD 2013), 19.–23. 08. 2013.
QAZIZADEH, A., PERSSON, R., STICHEL, S. On-track tests of active vertical suspension on a passenger train. Vehicle System Dynamics [online]. 2015, 53(6), 798–811 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2015.1015429
QAZIZADEH, A., STICHEL, S., FEYZMAHDAVIAN, H. R. Wheelset curving guidance using H ∞ control. Vehicle System Dynamics [online]. 2017, 56(3), 461–484 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2017.1391396
MICHÁLEK, J., ZELENKA, T. Reduction of lateral forces between the railway vehicle and the track in small-radius curves by means of active elements. Applied and Computational Mechanics [online]. 2011, 5(2), 187–196 [cit. 04. 06. 2021]. ISSN: 2336-1182. Dostupné z: https://www.kme.zcu.cz/acm/acm/article/view/162/126
WANG, X., LIU, B., DI GIALLEONARDO, E., KOVACIC, I., BRUNI, S. Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation. Vehicle System Dynamics [online]. 2021. ISSN 0042-3114.
DOI: 10.1080/00423114.2021.1912366
YUE, H., YADONG, S., GUOSONG, W., YUN, L., YUAN, Y. Simulation and Experimental Study on the Active Stability of High-Speed Trains. Computing in Science and Engineering [online]. 2019, 21(3), 72–82 [cit. 04. 06. 2021]. ISSN 1521-9615. DOI: 10.1109/MCSE.2019.2893159
PARK, J-H., KOH, H-I., HUR, H-M., KIM, M-S., YOU, W-H. Design and analysis of an active steering bogie for urban trains. Journal of Mechanical Science and Technology [online]. 2010, 24(6), 1353–1362 [cit. 04. 06. 2021]. ISSN 1738-494X. DOI:10.1007/s12206-010-0341-4
UMEHARA, Y., KAMOSHITA, S., ISHIQURI, K., YAMANAQA, Y. Development of electrohydraulic actuator with fail-safe function for steering system. Quarterly Report of RTRI. 2014, 55(3), 131–137. ISSN 1880-1765.
HUR, H., SHIN, Y., AHN, D., HAM, Y. Steering Performance Evaluation of Active Steering Bogie to Reduce Wheel Wear on Test Line. International Journal of Precision Engineering and Manufacturing [online]. 2019, 20(supplement), 1591–1600 [cit. 04. 06. 2021]. ISSN 2234-7593.
DOI:10.1007/s12541-019-00167-0
GIOSSI, R. L., PERSSON, R., STICHEL, S. Improved curving performance of an innovative twoaxle vehicle: a reasonable feedforward active steering approach. Vehicle System Dynamics [online]. 2020 [cit. 04. 06. 2021]. ISSN 0042-3114. DOI: 10.1080/00423114.2020.1823005
CORDERO SAPIÉN, J. CRRC Announces Global Release of CETROVO Carbon-fibre Metro Vehicles. In: Railway News [online]. 26. 09. 2018 [cit. 04. 06. 2021]. Dostupné z: https://railwaynews.com/crrc-global-release-cetrovo-carbon-fibre-metro-vehicles/
ČAPEK, J. Optimalizace jízdních vlastností nízkopodlažních tramvají. Praha, 2013. Disertační práce. ČVUT v Praze.
KONOWROCKI, R., KALINOWSKI, D., SZOLC, T., MARCZEWSKI, A. Identification of safety hazards and operating conditions of the low-floor tram with independently rotating wheels with various drive control algorithms. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2021, 23(1), 21–33. ISSN 1507-2711.
PEREZ, J., MAUER, L., BUSTURIA, J. M. Design of Active Steering Systems for Bogie-Based Railway Vehicles with Independently Rotating Wheels. Vehicle System Dynamics [online]. 2016, 37(supplement 1), 209–220. ISSN 0042-3114. DOI: 10.1080/00423114.2002.11666233
MEI, T. X., GOODALL, R. M. Practical Strategies for Controlling Railway Wheelsets Independently Rotating Wheels. In: Journal of Dynamic Systems, Measurement, and Control [online]. 2003, 125(3), 354–360 [cit. 04. 06. 2021]. ISSN 0022-0434. DOI: 10.1115/1.1592191
LIANG, B., IWNICKI, S. D. Independently Rotating Wheels with Induction Motors for High-Speed Trains. Journal of Control Science and Engineering. 2011, 1–7. ISSN 1687-5249.
AHN, H., LEE, H., GO, S., CHO, Y., LEE, J. Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving. Journal of Electrical Engineering and Technology. 2016, 11(4) 1042–1048. ISSN 1975-0102.
LU, ZG., YANG, Z., HUANG, Q., WANG, XC. Robust active guidance control using the μ-synthesis method for a tramcar with independently rotating wheelsets. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2019, 233(1), 33–48. ISSN 0954-4097. DOI: 10.1177/0954409718777374
OH, YJ., LEE, JK., LIU, HC., CHO, S., LEE, J., LEE, HJ. Hardware-in-the-Loop Simulation for active control of tramcars with independently rotating wheels. IEEE Access. 2019, 7, 71252–71261. DOI: 10.1109/ACCESS.2019.2920245
KURZECK, B., VALENTE, L. A novel mechatronic running gear: concept, simulation and scaled roller rig testing. Lille, France: 9th world congress railway research, 22.–26. 05. 2011.
STOW, J., COONEY, N., GOODALL, R. M., SELLICK, R. The use of wheelmotors to provide active steering and guidance for a light rail vehicle. London, UK: The Stephenson Conference: Research for Railways, 25.–27. 04. 2017.
SUGUHARA, Y., KOJIMA, T. Suppression of vertical vibration in railway vehicle carbodies through control of damping force in primary suspension: presentation of results from running tests with meter-gauge car on a secondary line. WIT Transactions on The Built Environment.
Computers in Railways XVI. 2018, 181, 329–337. ISSN 1743-3509.
FARHAT, N., WARD, C. P., GOODALL, R. M., DIXON, R. The benefits of mechatronically-guided railway vehicles: A multi-body physics simulation study. Mechatronics. 2018, 51, 115–126. ISSN 0957-4158. DOI: 10.1016/j.mechatronics.2018.03.008
KRÜGER, D., LÜDICKE, D., HECKMANN, A., ALVES, C.G. Next Generation Train Bogie: Production of a Prototype Axle Bridge for the "NGT Bogie Research Facility" (FuN). ZEVrail. 2021, 145(1-2), 42–49. ISSN 1618-8330.